Quick planning using "S" curves and cost based durations

Fernando Valderrama, Presto Rafael Guadalupe, UPM

17, 18 y 19 de julio de 2013

Objective

Fully automated model for quick planning based on the project cost estimate

- Total duration
- Allocation of cost over time
- Defining and sequencing activities
- Activities duration
- Number of crews

Estimating total duration

Relationship between cost and time (BCIS, 2009)

Use
General
Collective housing
Single family

Duration (weeks)
$22.4 \times$ LOG ($€$) - 91
$33 \times \operatorname{LOG}(€)-146$
$31 \times$ LOG (€) - 131

Allocation of cost over time

Expenses by periods (Lara and Dinsmore)

Defining and sequencing activities

		NatC	Code	Description	QtyTgt Unit	$\begin{array}{r} \text { 1: Plan } \\ \text { 31-Jul-12 } \end{array}$	$\begin{array}{rr} \text { 2: Plan } & \text { 3: Plan } \\ \text { 31-Aug-12 } & \text { 30-Sep-12 } \end{array}$	$\begin{array}{r} \text { 4: Plan } \\ \text { 31-Oct-12 } \end{array}$	$\begin{array}{r} \text { 5: Plan } \\ \text { 30-Nov-12 } \end{array}$	$\begin{array}{r} \text { 6: Plan } \\ \text { 31-Dec-12 } \end{array}$	$\begin{array}{r} \text { 7: Plan } \\ \text { 31-Jan-13 } \end{array}$	$\begin{array}{r} \text { 8: Plan } \\ 28-\text { Feb-13 } \end{array}$	$\begin{array}{r} \text { 9: Plan } \\ \text { 31-Mar-13 } \end{array}$	$\begin{array}{r} 10: \text { Plan } \\ 30-\mathrm{Apr}-13 \end{array}$
1／0	－	\＃	0	Housing project	1	81．819，57	94．631，40 107．592，89	120．252，72	132．122，19	142．700，30	151．509，33	158．132，48	162．244，74	163．639，07
2／1	＋1	\＃	E01	Preliminaries	1	3．981，85								
3／1	＋ 2	む	E02	Earthwork	1	48．877，31								
4／1	＋ 3	あ	E03	Sewage	1	10．072，11								
5／1	－4	む	E04	Foundations	1	18．888，30	46．181，73							
6／2	＋ 4.1	를	E04CM040	HM－20／P／20／I concrete cleaning	$34,59 \mathrm{~m} 3$	2．119，68								
7／2	＋4．2	き	E04CE020	Wood formwork footings，trenches，beams F ．\quad ．	$48,68 \mathrm{~m} 2$	778，39								
8／2	＋ 4.3	『	E04CA060	HA－25／P／40／lla concrete，footings	$220,88 \mathrm{~m} 3$	15．990，23	10．714，16							
9／2	＋ 4.4	플	E04SA020	HA－25 concrete slab reinforced， $\mathrm{e}=15 \mathrm{~cm}$	$659,35 \mathrm{~m} 2$		9．059，47							
10／2	＋4．5	凾	E04SE020	Limestone 40／80，e＝20 cm	$659,35 \mathrm{~m} 2$		4．437，43							
11／2	＋ 4.6	已	E04MA010	HA－25／P／20／l in concrete wall 25 cm ，1－sided	$88,57 \mathrm{~m} 3$		21．970，67							
12／1	－ 5	¢	E05	Structures	1		48．449，67 107．592，89	120．252，72	132．122，19	41．794，27				
13／2	＋ 5.1	『	E05HFA020	Salb self－supporting beam $20+5 \mathrm{~cm}, 60 \mathrm{~cm}$ bas	$6.277,72 \mathrm{~m} 2$		48．449，67 107．592，89	114．778，28						
14／2	＋ 5.2	き	E05AG010	Lintel galvanized steel， $250 \times 4 \mathrm{~mm}$	$365,45 \mathrm{~m}$			5．474，44	986，72					
15／2	＋ 5.3	3	E05AW040	Angle of 60 mm	$108,00 \mathrm{~m}$				2．066，04					
16／2	5.4	플	E05HFS400＿01	Formation of hollow slab	$181,37 \mathrm{~m} 2$				8．705，76					
17／2	＋ 5.5	き	E05HLA030	HA－25／P／20 concrete，formwork slabs $5 \mathrm{~kg} / \mathrm{m} 3$	$11,66 \mathrm{~m} 3$				2．775，08					
18／2	＋ 5.6	ङ	E05HSA010	HA－25／P／20／l concrete，pillars，metal formwork，	205，16 m3				47．619，69					
19／2	＋ 5.7	ङ	E05HVA030	Concrete girders with wood framing HA－25／P／2	$230,18 \mathrm{~m} 3$				69．968，90	1．888，69				
20／2	＋ 5.8	玉	E05HVA075	HA－25／P／20／I concrete with flat bands	$107,85 \mathrm{~m} 3$					39．905，58				
21／1	＋ 6	む	E07	Walls and divisions	1					100．906，03	151．509，33	77．457，39		
22／1	＋ 7	あ	E08	Cladding and suspended ceilings	1							80．675，09	89．886，69	
23／1	＋8	\＃	E09	Covers	1								40．090，04	
24／1	＋9	む	E10	Insulation and waterproofing	1								32．268，01	59．251，19

Activities sequencing and cost allocation based on＂S＂ curve（Presto）

Activities duration

Based on

- Proportionality between activity (resources) cost and duration and total (resources) cost and duration
- Estimation of the number of simultaneous activities
- Correction for activity size
- A simultaneity coefficient V ($0=$ serial, $1=$ parallel) is inserted to adapt to different situations

Activity duration =
(Activity cost / Total cost) ^ ($1-\mathrm{V}$) \times Total duration

Final result

Presto
No. of crews = Time based duration / Cost based duration

Planned vs. calculated durations

Commercial center
Activities at division level, V $=0,6$

Planned vs. calculated durations

Residential building

Activities at work unit level, $V=0,4$

Future work

- Refine and validate the model for different project types and sizes

Conclusions

Starting from an estimate, the methodology is completely automatic, with the following decision points:

- Applying the BCIS expression
- Checking the sequential order
- Selecting the right " S " curve for the project
- Deciding the simultaneity coefficient

Thank you

17, 18 y 19 de julio de 2013

